
Química II (Química General y Orgánica)

Unidad II Sistemas Dispersos

Elaborado por: Q.F.B. Guadalupe Echeagaray Herrera

Sistemas Dispersos

Sistemas Dispersos:

- □ Están constituidos por <u>dos o más</u> <u>sustancias puras</u>, unidas físicamente, (mezcladas).
- Pueden separarse por métodos físicos.
- □ Sus componentes conservan sus propiedades.

Sistemas Dispersos

Dependiendo del tamaño de las partículas, los sistemas dispersos se clasifican en:

- □ Soluciones (las partículas disueltas –soluto- tienen tamaño molecular o iónico, lo cual hace prácticamente imposible observarlas a simple vista)
- □ Coloides (las partículas dispersas son de mayor tamaño que las de soluto en una solución y menores que en las suspensiones)
- □ Suspensiones (son dispersiones en las cuales el tamaño de sus partículas es mayor de 100 nm (1 nm = 10⁻⁹ m) razón por la cual se sedimentan en reposo)

Sistemas Dispersos Ejemplos de sistemas dispersos que se encuentran en nuestro entorno: □ Aire Agua de mares y lagos □ Leche ■ Mantequilla Queso Productos de limpieza ■ Medicamentos Líquidos corporales (sangre, jugos digestivos, saliva, orina, etc.) ■ Muebles de latón

Sistemas Dispersos

Características de las Soluciones:

- □ El soluto disuelto tiene tamaño molecular o iónico.
- Cuando son líquidas son transparentes y no dispersan la luz.
- El soluto permanece distribuido uniformemente en la solución y <u>no se</u> <u>sedimenta</u> con el tiempo.
- Los medios físicos por los cuales se pueden separar sus componentes son generalmente destilación y evaporación.

Tipos de Soluciones

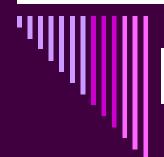
- Las soluciones se clasifican dependiendo del <u>estado físico</u> de las sustancias que las van a formar.
- La solución tiene el estado físico del solvente.
- Las soluciones más comunes son acuosas.

http://es.wikipedia.org/wiki/Soluci%C3%B3n

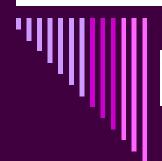
Ejemplos de Soluciones:

Soluto	Solvente	Solución	Ejemplo	
Gas	Gas	Gas	Aire (O ₂ en N ₂)	
Gas	Líquido	Líquido	Refrescos (CO ₂ en agua)	
Líquido	Líquido	Líquido	Vino (etanol en agua)	
Líquido	Sólido	Sólido	Empastes dentales (mercurio líquido en plata sólida)	
Sólido	Líquido	Líquido	Salmuera (NaCl en agua)	
Sólido	Sólido	Sólido	Acero (carbono en hierro)	

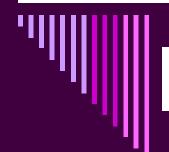
Q.F.B. Guadalupe Echeagaray Herrera



La solubilidad es una medida de la cantidad de soluto que se puede disolver en una determinada cantidad de solvente en condiciones específicas.


Factores de los que depende la Solubilidad:

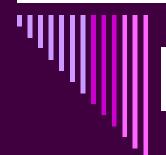
- ☐ Propiedades del soluto y del solvente.-("Lo semejante disuelve a lo semejante")
- ☐ Temperatura.- (por lo general la solubilidad aumenta a medida que aumenta la temperatura)
- Presión.- Solo influye cuando uno de los componentes de la solución es gas. "La presión y la solubilidad de un gas son directamente proporcional"


Concentración cualitativa:

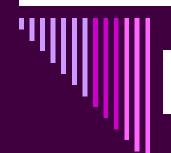
- La concentración de una solución expresa la cantidad de soluto disuelta en determinada cantidad de solvente o de solución.
- No se señala la cantidad de soluto disuelto.

Solución diluida y concentrada:

- Una solución diluida es aquella que tiene una cantidad de soluto disuelto relativamente pequeña.
- La concentrada, es una solución que contiene cantidades relativamente grandes de soluto disuelto.


Solución Saturada:

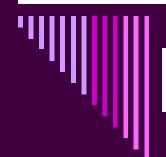
- Contiene tanto soluto como puede disolverse en el solvente, utilizando medios normales.
- Si se añade más soluto este se disolverá, pero al mismo tiempo, parte del soluto que estaba disuelto se cristalizará.
- La velocidad de disolución es igual a la velocidad de cristalización.


Solución Sobresaturada:

- Es aquella en la que la concentración de soluto es mayor que la de una solución saturada.
- Esta solución es inestable y cualquier cambio por pequeño que sea, provocará que el exceso de soluto se cristalice, separándose de la solución.
- La velocidad de cristalización es mayor que la velocidad de disolución. (miel)

Solución Insaturada:

- Es aquella en la que la concentración del soluto es menor que la concentración de una solución saturada, bajo las mismas condiciones.
- En este tipo de solución, mientras no se llegue al punto de saturación, el soluto que se añada se disolverá.
- La velocidad de disolución del soluto no disuelto, es mayor que la velocidad de cristalización del soluto disuelto.


Concentración Cuantitativa de las Soluciones:

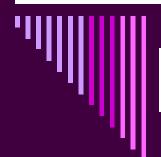
- □ Partes por Millón (ppm)
 - ppm= masa soluto x 1'000000
 - masa solución
- □ Porcentaje en Masa (% masa)
 - %= masa soluto x 100 masa solución
- □ Molaridad (M)
 - M= moles soluto litros de solución


Cuadro comparativo Concentración Cualitativa:

Solución saturada	Velocidad de disolución igual que la velocidad de cristalización
Solución sobresaturada	Velocidad de disolución menor que la velocidad de cristalización
Solución insaturada (no saturada)	Velocidad de disolución mayor que la velocidad de cristalización

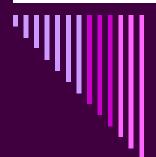
Propiedades Coligativas:

- Son alteraciones en las propiedades del solvente, debidas a la presencia del soluto.
- Dependen únicamente del número de partículas de soluto y son independientes de la masa y tipo de soluto disuelto.


Las Propiedades Coligativas son:

- Disminución de la presión vapor
- 2. Depresión del punto de congelación
- 3. Aumento del punto de ebullición
- 4. Presión osmótica

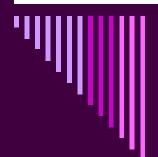
Coloides:


- Las partículas dispersas son de mayor tamaño que las del soluto en una solución y menores que en las suspensiones.
- El tamaño de las partículas coloidales va desde 1 nanómetro (nm) hasta 100 nm.
- Estas partículas no son visibles a simple vista, ni precipitan, pero pueden observarse en un microscopio óptico.

http://es.wikipedia.org/wiki/Coloide

Características de Coloides:

- Se identifican la fase dispersa y el medio dispersante.
- La fase dispersa es la sustancia que queda suspendida en otra llamada fase dispersante
- Ej. El humo está formado por partículas sólidas (fase dispersa) suspendida en el aire (fase dispersante).


Propiedades de los Coloides:

- 1. Efecto Tyndall: Al hacer pasar un rayo de luz a través de una dispersión coloidal, el rayo de luz se ve en forma clara y nítida al atravesar el coloide, fenómeno que no sucede en una solución.
- Este efecto se debe a que las partículas coloidales son lo suficientemente grandes como para dispersar la luz.

Propiedades de los Coloides:

- 2. Movimiento Browniano: Cuando se observa un coloide con un microscopio, se observa que las partículas dispersas se mueven al azar en la fase dispersante.
- Lo que en realidad se ve son los reflejos de las partículas coloidales, ya que su tamaño permite reflejar la luz.

Propiedades de los Coloides:

- 3. Efecto de carga eléctrica: Una partícula coloidal puede adsorber (adherir moléculas o iones sobre una superficie) partículas con carga eléctrica (iones) en su superficie.
- Las partículas con carga eléctrica adsorbidas sobre la superficie de alguna clase de partícula coloidal, pueden ser positivas o negativas.

Tabla comparativa de Soluciones, Coloides y Suspensiones:

Propiedad	Solución	Coloide	Suspensión
Tamaño de partícula	0.1-1.0 nm	1-100 nm	> 100 nm
Homogeneidad	Homogénea	En el límite	Heterogénea
Sedimentación	No sedimenta	No sedimenta	Sedimenta en reposo.
Filtrabilidad	Pasa a través del papel filtro ordinario.	Pasa a través del papel filtro ordinario.	Se separa mediante papel filtro ordinario.
Dispersión de la luz	No dispersa la luz	Dispersa la luz	Dispersa la luz

Q.F.B. Guadalupe Echeagaray Herrera